Abstract

The study presents a novel method that uses structured illumination imaging and data fusion to address one of the most difficult problems in 3-D optical measurement where an accurate 3-D sharp edge must be reconstructed, to allow automated inspection and reconstruction of a 3-D object. An innovative algorithm for reconstructing a 3-D surface profile with a sharp-edge boundary using multi-dimensional data fusion is proposed. An accurate 2-D surface edge is extracted from an image with high spatial-resolution, that is reconstructed using structured illumination imaging (SIM), so the projected edge contour of 2-D contour along the optical imaging axis can be accurately determined. The neighboring surface between the 2-D detected edge and the identified 3-D surface contour is reconstructed by extrapolating the surface using NURBS surface fitting to detect the intersecting edges. Experiments are performed to confirm the feasibility, effectiveness and accuracy of the developed method and there is a comparison between the results for a reconstructed 3-D sharp edge and a pre-calibrated high precision instrument. The proposed method ensures that a maximum deviation between the reference target and the reconstructed critical dimension is 3μm so a resolution for the optical imaging system of less than 0.5 pixel can be achieved. The experimental results demonstrate that the proposed method is both effective and accurate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.