Abstract

Chicken is the first sequenced avian that has a crucial role in human life for its meat and egg production. Because of various metabolic disorders, study the metabolism of chicken cell is important. Herein, the first genome-scale metabolic model of a chicken cell named iES1300, consists of 2427 reactions, 2569 metabolites, and 1300 genes, was reconstructed manually based on KEGG, BiGG, CHEBI, UNIPROT, REACTOME, and MetaNetX databases. Interactions of metabolic genes for growth were examined for E. coli, S. cerevisiae, human, and chicken metabolic models. The results indicated robustness to genetic manipulation for iES1300 similar to the results for human. iES1300 was integrated with transcriptomics data using algorithms and Principal Component Analysis was applied to compare context-specific models of the normal, tumor, lean and fat cell lines. It was found that the normal model has notable metabolic flexibility in the utilization of various metabolic pathways, especially in metabolic pathways of the carbohydrate metabolism, compared to the others. It was also concluded that the fat and tumor models have similar growth metabolisms and the lean chicken model has a more active lipid and carbohydrate metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.