Abstract

Accurate building geometry information is crucial for urban planning in constrained spaces, fueling the growing demand for large-scale, high-precision 3D city modeling. Traditional methods like oblique photogrammetry and LiDAR prove time consuming and expensive for low-cost 3D reconstruction of expansive urban scenes. Addressing this challenge, our study proposes a novel approach to leveraging single-view remote sensing images. By integrating shadow information with deep learning networks, our method measures building height and employs a semantic segmentation technique for single-image high-rise building reconstruction. In addition, we have designed complex shadow measurement algorithms and building contour correction algorithms to improve the accuracy of building models in conjunction with our previous research. We evaluate the method’s precision, time efficiency, and applicability across various data sources, scenarios, and scales. The results demonstrate the rapid and accurate acquisition of 3D building data with maintained geometric accuracy (mean error below 5 m). This approach offers an economical and effective solution for large-scale urban modeling, bridging the gap in cost-efficient 3D reconstruction techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call