Abstract
In this paper, we propose a novel method to reconstruct 3D human body pose for gait recognition from monocular image sequences based on top-down learning. Human body pose is represented by a linear combination of prototypes of 2D silhouette images and their corresponding 3D body models in terms of the position of a predetermined set of joints. With a 2D silhouette image, we can estimate optimal coefficients for a linear combination of prototypes of the 2D silhouette images by solving least square minimization. The 3D body model of the input silhouette image is obtained by applying the estimated coefficients to the corresponding 3D body model of prototypes. In the learning stage, the proposed method is hierarchically constructed by classifying the training data into several clusters recursively. Also, in the reconstructing stage, the proposed method hierarchically reconstructs 3D human body pose with a silhouette image. The experimental results show that our method can be efficient and effective to reconstruct 3D human body pose for gait recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.