Abstract

A method has been developed to reconstruct three-dimensional (3-D) surfaces from two-dimensional (2-D) projection data. It is used to produce individualized boundary element models, consisting of thorax and lung surfaces, for electro- and magnetocardiographic inverse problems. Two orthogonal projections are utilized. A geometrical prior model, built using segmented magnetic resonance images, is deformed according to profiles segmented from projection images. In our method, virtual X-ray images of the prior model are first constructed by simulating real X-ray imaging. The 2-D profiles of the model are segmented from the projections and elastically matched with the profiles segmented from patient data. The displacement vectors produced by the elastic 2-D matching are back projected onto the 3-D surface of the prior model. Finally, the model is deformed, using the back-projected vectors. Two different deformation methods are proposed. The accuracy of the method is validated by a simulation. The average reconstruction error of a thorax and lungs was 1.22 voxels, corresponding to about 5 mm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.