Abstract

We consider the problem of developing a method to reconstruct a potential $q$ from the partial data Dirichlet-to-Neumann map for the Schrödinger equation $(-Δ_g+q)u=0$ on a fixed admissible manifold $(M,g)$. If the part of the boundary that is inaccessible for measurements satisfies a flatness condition in one direction, then we reconstruct the local attenuated geodesic ray transform of the one-dimensional Fourier transform of the potential $q$. This allows us to reconstruct $q$ locally, if the local (unattenuated) geodesic ray transform is constructively invertible. We also reconstruct $q$ globally, if $M$ satisfies certain concavity condition and if the global geodesic ray transform can be inverted constructively. These are reconstruction procedures for the corresponding uniqueness results given by Kenig and Salo [7]. Moreover, the global reconstruction extends and improves the constructive proof of Nachman and Street [14] in the Euclidean setting. We derive a certain boundary integral equation which involves the given partial data and describes the traces of complex geometrical optics solutions. For construction of complex geometrical optics solutions, following [14] and improving their arguments, we use a certain family of Green's functions for the Laplace-Beltrami operator and the corresponding single layer potentials. The constructive inversion problem for local or global geodesic ray transforms is one of the major topics of interest in integral geometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call