Abstract
Autonomous robots for medical and emergency supplies are a potential way to avoid contact with people in quarantine and control the spread of contagious diseases in an indoor scene. However, scene understanding and reconstruction through a single low-cost camera remains a challenge. It is known that absolute precise depth cannot be calculated accurately from a single image, but the relative pose of different planes, which can be inferred from geometric features in a 2-D image, are more likely to be used in understanding scenes and its reconstruction. In this article, we present an interpretable model to bridge the gap between 2-D scene understanding and three-dimensional (3-D) reconstruction without prior training or any precise depth data. Based on 2-D semantic information in our previous works, the 3-D relative pose of estimated planes can be estimated. At that point, indoor scenes are approximated in the reconstruction. The approach behaves as an interpretable characteristic and requires no prior training or knowledge of the camera's internal parameters. We compare the quantitative performance on the percentage of incorrectly reconstructed planes by relative pose estimation. The results demonstrated that the method can successfully understand and reconstruct indoor scenes including both Manhattan and curved non-Manhattan structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.