Abstract
This paper presents a new method for fault diagnosis based on kernel principal component analysis (KPCA). The proposed method uses reconstruction-based contributions (RBC) to diagnose simple and complex faults in nonlinear principal component models based on KPCA. Similar to linear PCA, a combined index, based on the weighted combination of the Hotelling’s T2 and SPE indices, is proposed. Control limits for these fault detection indices are proposed using second-order moment approximation. The proposed fault detection and diagnosis scheme is tested with a simulated CSTR process where simple and complex faults are introduced. The simulation results show that the proposed fault detection and diagnosis methods are effective for KPCA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.