Abstract
Magnetic induction tomography (MIT) attempts to obtain the distribution of passive electrical properties inside the body. Eddy currents are induced in the body using an array of transmitter coils and the magnetic fields of these currents are measured by receiver coils. In clinical usage, the relative position of the coils to the body can change during data acquisition because of the expected/unexpected movements of the patient. Especially in respiration monitoring these movements will inevitably cause artefacts in the reconstructed images. In this paper, this effect was investigated for both state and frequency differential variants of MIT. It was found that a slight shift of the body in the transverse plane causes spurious perturbations on the surface. In reconstructions, this artefact on the surface propagates towards the centre in an oscillatory manner. It was observed that the movement can corrupt all the valuable information in state differential MIT, while frequency differential MIT seems more robust against movement effects. A filtering strategy is offered in order to decrease the movement artefacts in the images. To this end, monitoring of the patient's movement during data acquisition is required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.