Abstract
The emergence of scanning probe and electron beam imaging techniques has allowed quantitative studies of atomic structure and minute details of electronic and vibrational structure on the level of individual atomic units. These microscopic descriptors, in turn, can be associated with local symmetry breaking phenomena, representing the stochastic manifestation of the underpinning generative physical model. Here, we explore the reconstruction of exchange integrals in the Hamiltonian for a lattice model with two competing interactions from observations of microscopic degrees of freedom and establish the uncertainties and reliability of such analysis in a broad parameter-temperature space. In contrast to other approaches, we specifically specify a loss function inherent to thermodynamic systems and utilize it to estimate uncertainty in simulated realizations of different models. As an ancillary task, we develop a machine learning approach based on histogram clustering to predict phase diagrams efficiently using a reduced descriptor space. We further demonstrate that reconstruction is possible well above the phase transition and in the regions of parameter space when the macroscopic ground state of the system is poorly defined due to frustrated interactions. This suggests that this approach can be applied to the traditionally complex problems of condensed matter physics such as ferroelectric relaxors and morphotropic phase boundary systems, spin and cluster glasses, and quantum systems once the local descriptors linked to the relevant physical behaviors are known.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.