Abstract

Abstract Abnormal activity of the western Pacific subtropical high (WPSH) may result in extreme weather events in East Asia. However, because the relationship between the WPSH and other components of the East Asian summer monsoon (EASM) system is unknown, it is still difficult to forecast such abnormal activity. The delay-relevant method is used to study 2010 data for abnormal weather and it is concluded that the Indian monsoon latent heat flux, the Somali low-level jet, and the Tibetan high activity index can significantly affect anomalies in the WPSH in the EASM system. By combining genetic algorithms and statistical–dynamical reconstruction theory, a nonlinear statistical–dynamical model of the WPSH and these three influencing factors was objectively reconstructed from actual 2010 data and a dynamically extended forecasting experiment was carried out. To further test the forecasting performance of the reconstructed model, further experiments using data from nine abnormal WPSH years and eight normal WPSH years were performed for comparison. All the results suggest that the forecasts of the subtropical high area index, the Indian monsoon latent heat flux, the Somali low-level jet, and the Tibetan high activity index all have good performance in the short and medium terms (<25 days). Not only is the forecasting trend accurate, but the mean absolute percentage error is ≤9%. This work suggests new areas of research into the association between the WPSH and EASM systems and provides a new method for the prediction of the WPSH area index.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call