Abstract

The concept of slope discrepancy developed in the mid-1980's to assess measurement noise in a wave-front sensor system is shown to have additional contributions that are due to fitting error and branch points. This understanding is facilitated by the development of a new formulation that employs Fourier techniques to decompose the measured gradient field (i.e., wave-front sensor measurements) into two components, one that is expressed as the gradient of a scalar potential and the other that is expressed as the curl of a vector potential. A key feature of the theory presented here is the fact that both components of the phase (one corresponding to each component of the gradient field) are easily reconstructable from the measured gradients. In addition, the scalar and vector potentials are both easily expressible in terms of the measured gradient field. The work concludes with a wave optics simulation example that illustrates the ease with which both components of the phase can be obtained. The results obtained illustrate that branch point effects are not significant until the Rytov number is greater than 0.2. In addition, the branch point contribution to the phase not only is reconstructed from the gradient data but is used to illustrate the significant performance improvement that results when this contribution is included in the correction applied by an adaptive optics system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.