Abstract
Genome-scale metabolic models (GEMs) generated from automated reconstruction pipelines often lack accuracy due to the need for extensive gapfilling and the inference of periphery metabolic pathways based on lower-confidence annotations. The central carbon pathways and electron transport chains are among the most well-understood regions of microbial metabolism, and these pathways contribute significantly toward defining cellular behavior and growth conditions. Thus, it is often useful to construct a simplified core metabolic model (CMM) that is comprised of only the high-confidence central pathways. In this chapter, we discuss methods for producing core metabolic models (CMM) based on genome annotations. With its reduced scope compared to GEMs, CMM reconstruction focuses on accurate representation of the central metabolic pathways related to energy biosynthesis and accurate energy yield predictions. We demonstrate the reconstruction and analysis of CMMs using the DOE Systems Biology Knowledgebase (KBase). The complete workflow is available at http://kbase.us/core-models/.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.