Abstract

BackgroundMortierella alpina is an oleaginous fungus used in the industrial scale production of arachidonic acid (ARA). In order to investigate the metabolic characteristics at a systems level and to explore potential strategies for enhanced lipid production, a genome-scale metabolic model of M. alpina was reconstructed.ResultsThis model included 1106 genes, 1854 reactions and 1732 metabolites. On minimal growth medium, 86 genes were identified as essential, whereas 49 essential genes were identified on yeast extract medium. A series of sequential desaturase and elongase catalysed steps are involved in the synthesis of polyunsaturated fatty acids (PUFAs) from acetyl-CoA precursors, with concomitant NADPH consumption, and these steps were investigated in this study. Oxygen is known to affect the degree of unsaturation of PUFAs, and robustness analysis determined that an oxygen uptake rate of 2.0 mmol gDW−1 h−1 was optimal for ARA accumulation. The flux of 53 reactions involving NADPH was significantly altered at different ARA levels. Of these, malic enzyme (ME) was confirmed as a key component in ARA production and NADPH generation. When using minimization of metabolic adjustment, a knock-out of ME led to a 38.28% decrease in ARA production.ConclusionsThe simulation results confirmed the model as a useful tool for future research on the metabolism of PUFAs.Electronic supplementary materialThe online version of this article (doi:10.1186/s12918-014-0137-8) contains supplementary material, which is available to authorized users.

Highlights

  • Mortierella alpina is an oleaginous fungus used in the industrial scale production of arachidonic acid (ARA)

  • Characterization of the M. alpina GSMM iCY1106 The genome-scale metabolic model iCY1106 reconstructed in this study included 1106 genes representing 9.51% of the 11631 protein-coding genes in the genome of M. alpina ATCC 32222

  • All reactions involving NADPH consumption reactions other than R13, R16, R51, and R53 were associated with lipid metabolism. These results indicated that the increase in ARA production was directly correlated with the NADPH consumption rate

Read more

Summary

Introduction

Mortierella alpina is an oleaginous fungus used in the industrial scale production of arachidonic acid (ARA). In order to investigate the metabolic characteristics at a systems level and to explore potential strategies for enhanced lipid production, a genome-scale metabolic model of M. alpina was reconstructed. The important ω-6 polyunsaturated fatty acid (PUFA) arachidonic acid (ARA) can account for over 50% of the lipid content [2]. M. alpina is nonpathogenic and nonallergenic, including the spores produced during the industrial production of ARA [3] which is widely used in food ingredients [4]. ARA has been produced at levels up to 19.8 g/L in 5 L cultures grown over 7 days [5]. Various methods have been attempted in order to improve ARA production including screening.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call