Abstract

Abstract In machining simulations, dexel models are often used to represent objects to achieve high accuracy and real-time performance. However, this approach leads to the loss of original surface information and topological relationships, thereby affecting the visualization effect of simulations. Furthermore, existing reconstruction methods have the drawbacks of generalization or redundancy. To reconstruct the surface of dexel models efficiently and accurately, this paper proposes an algorithm based on “composite block” partition, which converts the dexel model into a polyhedral model. The algorithm begins by partitioning the entire dexel model within the grids into several composite blocks based on the “Connectivity Principle” and generating their end faces. Subsequently, the transitional zone’s surface is reconstructed based on the connectivity relationships of the boundaries of composite blocks. Finally, an optimization process refines the boundaries to generate smoother side faces at a low computational cost. The paper first validates the algorithm’s reconstruction capability and the effectiveness of edge refinement through the reconstruction of various dexel models with different precision levels. It is observed that edge refinement does not introduce excessive additional computation, doubling the overall efficiency compared to existing algorithms. Furthermore, by changing model volumes and performing separate reconstructions, it’s noted that as the volume increases, the incremental growth in conversion time gradually decreases. This makes the algorithm particularly suitable for reconstructing large-scale complex dexel models. Finally, the application of this algorithm in virtual-real simulation systems and industrial digital twin systems is briefly introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.