Abstract

We propose VFR-UFD, a new deep learning framework that performs vector field reconstruction (VFR) for unsteady flow data (UFD). Given integral flow lines (i.e., streamlines), we first generate low-quality UFD via diffusion. VFR-UFD then leverages a convolutional neural network to reconstruct spatiotemporally coherent, high-quality UFD. The core of VFR-UFD lies in recurrent residual blocks that iteratively refine and denoise the input vector fields at different scales, both locally and globally. We take consecutive time steps as input to capture temporal coherence and apply streamline-based optimization to preserve spatial coherence. To show the effectiveness of VFR-UFD, we experiment with several vector field data sets to report quantitative and qualitative results and compare VFR-UFD with two VFR methods and one compression algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.