Abstract

Knots are topological structures describing how a looped thread can be arranged in space. Although most familiar as knotted material filaments, it is also possible to create knots in singular structures within three-dimensional physical fields such as fluid vortices1 and the nulls of optical fields2–4. Here we produce, in the transverse polarization profile of optical beams, knotted lines of circular transverse polarization. We generate and observe both simple torus knots and links as well as the topologically more complicated figure-eight knot. The presence of these knotted polarization singularities endows a nontrivial topological structure on the entire three-dimensional propagating wavefield. In particular, the contours of constant polarization azimuth form Seifert surfaces of high genus5, which we are able to resolve experimentally in a process we call seifertometry. This analysis reveals a level of topological complexity, present in all experimentally generated polarization fields, that goes beyond the conventional reconstruction of polarization singularity lines. Knotted lines representing torus knot and figure-eight knot are produced in the polarization profile of optical beams, leading to a topological characterization of the structure of the polarization field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.