Abstract
Sporadic, direct observations over a 50 yr period inadequately characterize the history of seasonal hypoxia and anoxia in Chesapeake Bay, a large estuary threatened by eutrophication. Here, we undertake a reconstruction of 20th century oxygen depletion in this estuary using Mo concentrations in 210Pb-dated sediments; Cu concentrations are used to control for anthropogenic influences. Cores from the central channel display mild Mo enrichments above crustal backgrounds (up to 5 μg/g) and strong Cu enrichments (up to 35 μg/g). Temporally, Cu enrichment (mostly anthropogenic) began earlier and stabilized in the last two thirds of the 20th century. In contrast, Mo enrichment has grown during the last two thirds of the century. Molybdenum enrichment is mostly hydrogenic, except in a section of the channel that receives additional Mo from erosion of Early Miocene shore deposits. Two geochemical mechanisms promote Mo enrichment: manganese refluxing concentrates dissolved MoO 4 2− at the sediment-water interface and sulfide substitution into MoO 4 2− produces thiomolybdates, which can be fixed by particles. The Mo enrichment mechanisms operate primarily during periods when bottom waters are anoxic and thiomolybdate formation can occur near the sediment-water interface. This implies a temporal coupling between water-column anoxia and Mo fixation even though fixation occurs only within sediments. The Mo enrichment profiles suggest that Chesapeake Bay has experienced growing O 2 depletion since the first half of the 20th century, but especially after 1960.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.