Abstract
The automatic extraction of a patient's natural history from Electronic Health Records (EHRs) is a critical step towards building intelligent systems that can reason about clinical variables and support decision making. Although EHRs contain a large amount of valuable information about the patient's medical care, this information can only be fully understood when analyzed in a temporal context. Any intelligent system should then be able to extract medical concepts, date expressions, temporal relations and the temporal ordering of medical events from the free texts of EHRs; yet, this task is hard to tackle, due to the domain specific nature of EHRs, writing quality and lack of structure of these texts, and more generally the presence of redundant information. In this paper, we introduce a new Natural Language Processing (NLP) framework, capable of extracting the aforementioned elements from EHRs written in Spanish using rule-based methods. We focus on building medical timelines, which include disease diagnosis and its progression over time. By using a large dataset of EHRs comprising information about patients suffering from lung cancer, we show that our framework has an adequate level of performance by correctly building the timeline for 843 patients from a pool of 989 patients, achieving a precision of 0.852.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.