Abstract

Engineered human kidney-on-a-chip platforms show tremendous promise for disease modeling and drug screening. Outstanding challenges exist, however, in reconstructing the complex architecture, cellular make-up, and matrix composition necessary for the proper modeling of kidney function. Herein, the first fully tunable human kidney-on-a-chip platform is reported that allows the reconstruction of the native architecture of the renal endothelial-epithelial exchange interface using entirely cell-remodelable matrix and patient-derived kidney cells. This platform consists of a double-layer human renal vascular-tubular unit (hRVTU) enabled by a thin collagen membrane that replicates the kidney exchange interface. It is shown that endothelial and epithelial cells lining their respective lumens remodel the membrane in culture into a ≈1 µm thick exchange interface composed of native basement membrane proteins. This interface displays sufficient mechanical integrity for media flow and blood perfusion. As a proof of principle, it is demonstrated that the hRVTU performs kidney-specific functions including reabsorption of albumin and glucose from the epithelial channel. By incorporating multiple cell populations from single donors, it is demonstrated that the hRVTU may have utility for future precision medicine applications. The success of the system provides new opportunities for the next generation of organ-on-a-chip models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.