Abstract
Gene duplication is an important mechanism for the generation of evolutionary novelty. Paralogous genes that are not silenced may evolve new functions (neofunctionalization) that will alter the developmental outcome of preexisting genetic pathways, partition ancestral functions (subfunctionalization) into divergent developmental modules, or function redundantly. Functional divergence can occur by changes in the spatio-temporal patterns of gene expression and/or by changes in the activities of their protein products. We reconstructed the evolutionary history of two paralogous monocot MADS-box transcription factors, FUL1 and FUL2, and determined the evolution of sequence and gene expression in grass AP1/FUL-like genes. Monocot AP1/FUL-like genes duplicated at the base of Poaceae and codon substitutions occurred under relaxed selection mostly along the branch leading to FUL2. Following the duplication, FUL1 was apparently lost from early diverging taxa, a pattern consistent with major changes in grass floral morphology. Overlapping gene expression patterns in leaves and spikelets indicate that FUL1 and FUL2 probably share some redundant functions, but that FUL2 may have become temporally restricted under partial subfunctionalization to particular stages of floret development. These data have allowed us to reconstruct the history of AP1/FUL-like genes in Poaceae and to hypothesize a role for this gene duplication in the evolution of the grass spikelet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.