Abstract

We extend the scalar-tensor reconstruction techniques for classical cosmology frameworks, in the context of loop quantum cosmology. After presenting in some detail how the equations are generalized in the loop quantum cosmology case, we discuss which new features and limitations does the quantum framework brings along, and we use various illustrative examples in order to demonstrate how the method works. As we show the energy density has two different classes of solutions, and one of these yields the correct classical limit while the second captures the quantum phenomena. We study in detail the scalar tensor reconstruction method for both these solutions. Also we discuss some scenarios for which the Hubble rate becomes unbounded at finite time, which corresponds for example in a case that a Big Rip occurs. As we show this issue is non-trivial and we discuss how this case should be treated in a consistent way. Finally, we investigate how the classical stability conditions for the scalar-tensor solutions are generalized in the loop quantum framework.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call