Abstract
Abstract The Antarctic ice sheet (AIS) is the Earth’s largest store of frozen water; understanding how it changed in the past allows us to improve projections of how it, and sea levels, may change. Here, we use previous AIS reconstructions, water isotope ratios from ice cores, and simulator predictions of the relationship between the ice-sheet shape and isotope ratios to create a model of the AIS at the Last Glacial Maximum. We develop a prior distribution that captures expert opinion about the AIS, generate a designed ensemble of potential shapes, run these through the climate model HadCM3, and train a Gaussian process emulator of the link between ice-sheet shape and isotope ratios. To make the analysis computationally tractable, we develop a preferential principal component method that allows us to reduce the dimension of the problem in a way that accounts for the differing importance we place in reconstructions, allowing us to create a basis that reflects prior uncertainty. We use Markov chain Monte Carlo to sample from the posterior distribution, finding shapes for which HadCM3 predicts isotope ratios closely matching observations from ice cores. The posterior distribution allows us to quantify the uncertainty in the reconstructed shape, a feature missing in other analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series C: Applied Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.