Abstract

Terrestrial water storage (TWS) is a key element in the global and continental water cycle. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) has provided a highly valuable dataset, which allows the study of TWS over larger river basins worldwide. However, the lifetime of GRACE is too short to demonstrate long-term variability in TWS. In the Beishan area of northwestern China, which is selected as the most prospective site for high-level radioactive waste (HLRW) disposal, the assessment of long-term TWS changes is crucial to understand disposal safety. Monthly and annual TWS changes during the past 35 years are reconstructed using GRACE data, other remote sensing products, and the water balance method. Hydrological flux outputs from multisource remote sensing products are analyzed and compared to select appropriate data sources. The results show that a decreasing trend is found for GRACE-filtered and Center for Space Research (CSR) mascon solutions from 2003 to 2015, with slopes of −2.30 ± 0.52 and −1.52 ± 0.24 mm/year, respectively. TWS variations independently computed from the water balance method also show a similar decreasing trend with the GRACE observations, with a slope of −0.94 mm/year over the same period. Overall, the TWS anomalies in the Beishan area change seasonally within 10 mm and have been decreasing since 1980, keeping a desirable dry condition as a HLRW disposal site.

Highlights

  • As a critical state variable in the hydrological cycle, terrestrial water storage (TWS) integrates surface water storage (SWS, including canopy interception, reservoirs, wetlands and lakes, rivers, and snow water equivalent), soil moisture storage (SMS), and groundwater storage (GWS) [1]

  • We present historical and contemporary water storage variation from remote sensing data and water balance approach and examine the uncertainties of the reconstructed water storage associated with data and model errors

  • TWS variations in our study region can be obtained from the Gravity Recovery and Climate Experiment (GRACE)-filtered products, GRACE products restored by a scaling factor from the CLM 4.0 model, and Center for Space Research (CSR) mascon solution

Read more

Summary

Introduction

As a critical state variable in the hydrological cycle, terrestrial water storage (TWS) integrates surface water storage (SWS, including canopy interception, reservoirs, wetlands and lakes, rivers, and snow water equivalent), soil moisture storage (SMS), and groundwater storage (GWS) [1]. For the past few decades, quantification of TWS variability has been accessible from hydrological modeling only. The construction and calibration of hydrological models require ground-based observations. Satellite remote sensing offers new ways of measuring hydrological fluxes at unprecedented spatial coverage and resolution, especially useful for regions where in situ measurements are sparse or nonexistent [4, 5]. Strategies that merge in situ model and satellite observations within a framework that result in consistent water cycle records are essential

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call