Abstract
Predictive models allow subject-specific inference when analyzing disease related alterations in neuroimaging data. Given a subject's data, inference can be made at two levels: global, i.e. identifiying condition presence for the subject, and local, i.e. detecting condition effect on each individual measurement extracted from the subject's data. While global inference is widely used, local inference, which can be used to form subject-specific effect maps, is rarely used because existing models often yield noisy detections composed of dispersed isolated islands. In this article, we propose a reconstruction method, named RSM, to improve subject-specific detections of predictive modeling approaches and in particular, binary classifiers. RSM specifically aims to reduce noise due to sampling error associated with using a finite sample of examples to train classifiers. The proposed method is a wrapper-type algorithm that can be used with different binary classifiers in a diagnostic manner, i.e. without information on condition presence. Reconstruction is posed as a Maximum-A-Posteriori problem with a prior model whose parameters are estimated from training data in a classifier-specific fashion. Experimental evaluation is performed on synthetically generated data and data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Results on synthetic data demonstrate that using RSM yields higher detection accuracy compared to using models directly or with bootstrap averaging. Analyses on the ADNI dataset show that RSM can also improve correlation between subject-specific detections in cortical thickness data and non-imaging markers of Alzheimer's Disease (AD), such as the Mini Mental State Examination Score and Cerebrospinal Fluid amyloid-β levels. Further reliability studies on the longitudinal ADNI dataset show improvement on detection reliability when RSM is used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.