Abstract
Abstract Grenville-age (1.3–0.9 Ga) zircons represent one of the most ubiquitous detrital zircon (DZ) age modes on Earth. In North America, given the widespread occurrence of Grenville basement, Grenville DZs are commonly viewed as nondiagnostic with regard to source region in provenance studies. Systematic recovery of DZ core-rim U-Pb ages makes it possible to identify and differentiate previously indistinguishable basement source terranes by leveraging their multistage tectono-magmatic evolution. Our analysis demonstrates that Grenville DZs exhibit distinct rim ages in different parts of the North American Paleozoic Appalachian-Ouachita-Marathon foreland. Whereas Grenville DZ grains in the eastern foreland, sourced from the southern Appalachian orogen in the eastern United States, exhibit Taconian and Acadian (490–350 Ma) rims, grains in the western foreland, derived from Mexico, mainly show Neoproterozoic (750–500 Ma) rim ages. This difference permits differentiation of nondiagnostic core ages by their distinctive rim ages. Furthermore, core-rim paired ages can illuminate potential genetic relationships among coexisting age components in DZ spectra, thereby indicating whether the DZs are derived from separate sources or from a single source with multistage tectono-magmatic histories. Thus, DZ rim-core ages can provide critical insights into reconstructing global source-to-sink systems and elucidating genetic linkages within multistage orogenic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.