Abstract

A signal is said to have finite rate of innovation if it has a finite number of degrees of freedom per unit of time. Reconstructing signals with finite rate of innovation from their exact average samples has been studied in Sun (SIAM J. Math. Anal. 38, 1389–1422, 2006). In this paper, we consider the problem of reconstructing signals with finite rate of innovation from their average samples in the presence of deterministic and random noise. We develop an adaptive Tikhonov regularization approach to this reconstruction problem. Our simulation results demonstrate that our adaptive approach is robust against noise, is almost consistent in various sampling processes, and is also locally implementable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.