Abstract
Reconstructing perceived stimulus (image) only from human brain activity measured with functional Magnetic Resonance Imaging (fMRI) is a significant task in brain decoding. However, the inconsistent distribution and representation between fMRI signals and visual images cause great ‘domain gap’. Moreover, the limited fMRI data instances generally suffer from the issues of low signal noise ratio (SNR), extremely high dimensionality, and limited spatial resolution. Existing methods are often affected by these issues so that a satisfactory reconstruction is still an open problem. In this paper, we show that it is possible to obtain a promising solution by learning visually-guided latent cognitive representations from the fMRI signals, and inversely decoding them to the image stimuli. The resulting framework is called Dual-Variational Autoencoder/ Generative Adversarial Network (D-Vae/Gan), which combines the advantages of adversarial representation learning with knowledge distillation. In addition, we introduce a novel three-stage learning strategy which enables the (cognitive) encoder to gradually distill useful knowledge from the paired (visual) encoder during the learning process. Extensive experimental results on both artificial and natural images have demonstrated that our method could achieve surprisingly good results and outperform the available alternatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.