Abstract

In this data article, a reconstructed database, which provides information from PHM08 challenge data set, is presented. The original turbofan engine data were from the Prognostic Center of Excellence (PCoE) of NASA Ames Research Center (Saxena and Goebel, 2008), and were simulated by the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) (Saxena et al., 2008). The data set is further divided into "training", "test" and "final test" subsets. It is expected from collaborators to train their models using “training” data subset, evaluate the Remaining Useful Life (RUL) prediction performance on “test” subset and finally, apply the models to the “final test” subset for competition. However, the "final test" results can only be submitted once by email to PCoE. Before the results are sent for performance evaluation, in order to pre-validate the dataset with true RUL values, this data article introduces reconstructed secondary datasets derived from the noisy degradation patterns of original trajectories. Reconstructed database refers to data that were collected from the training trajectories. Fundamentally, it is formed of individual partial trajectories in which the RUL is known as a ground truth. Its use provides a robust validation of the model developed for the PHM08 data challenge that would otherwise be ambiguous due to the high-risk of one-time submission. These data and analyses support the research data article “A Neural Network Filtering Approach for Similarity-Based Remaining Useful Life Estimations” (Bektas et al., 2018).

Highlights

  • PHM08 Challenge Data Set was carried out using Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) by simulating turbofan engine degradation [2]

  • The dataset describes how damage propagation can be modeled within the modules of aircraft gas turbine engines simulated under different combinations of operational conditions and fault mode

  • Data source location

Read more

Summary

Data Article

O. Bektas et al / Data in Brief 21 (2018) 2464–2469 truth. Its use provides a robust validation of the model developed for the PHM08 data challenge that would otherwise be ambiguous due to the high-risk of one-time submission. These data and analyses support the research data article “A Neural Network Filtering Approach for Similarity-Based Remaining Useful Life Estimations” (Bektas et al, 2018).

Experimental features
Value of the data

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.