Abstract

The complex debate on prehistoric settlement decisions is no longer tackled from a purely archaeological perspective but from a more landscape‐oriented manner combined with archaeological evidence. Therefore, reconstruction of several components of the former landscape is needed. Here, we focus on the reconstruction of the groundwater table based on modeling. The depth of the phreatic aquifer influences, for example, soil formation processes and vegetation type. Furthermore, it directly influences settlement by the wetness of a site. Palaeogroundwater modeling of the phreatic aquifer was carried out to produce a series of full‐coverage maps of the mean water table depth between 12.7 ka and the middle of the 20th century (1953) in Flanders, Belgium. The research focuses on the reconstruction of the input data and boundary conditions of the model and the model calibration. The model was calibrated for the 1924–1953 time period using drainage class maps. Archaeological site data and podzol occurrence data act as proxies for local drainage conditions over periods in the past. They also served as a control on the simulated phreatic palaeogroundwater levels. Model quality testing on an independent validation data set showed that the model predicts phreatic water table levels at the time of soil mapping well (mean error of 1.8 cm; root mean square error of 65.6 cm). Simulated hydrological conditions were in agreement with the occurrence of archaeological sites of Mesolithic to Roman age at 96% of the validation locations, and also with the occurrence of well‐drained podzols at 97% of the validation locations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call