Abstract

Various Partial Differential Equations (PDEs) have been used in computer graphics for approximating surfaces of geometric shapes by finding solutions to PDEs, subject to suitable boundary conditions. The PDE boundary conditions are defined as 3D curves on surfaces of the shapes. We propose how to automatically derive these curves from the surface of the original polygon mesh. Analytic solutions to the PDEs used throughout this work are fully determined by finding a set of coefficients associated with parametric functions according to the particular set of boundary conditions. When large polygon meshes are used, the PDE coefficients require an order of magnitude smaller space compared to the original polygon data and can be interactively rendered with different levels of detail. It allows for an efficient exchange of the PDE shapes in 3D Cyberworlds and their web visualization. In this paper we analyze and formulate the requirements for extracting suitable boundary conditions, describe the algorithm for the automatic deriving of the boundary curves, and present its implementation as a part of the function-based extension of VRML and X3D.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.