Abstract
Soil moisture is an essential component for the planetary balance between land surface water and energy. Obtaining long-term global soil moisture data is important for understanding the water cycle changes in the warming climate. To date several satellite soil moisture products are being developed with varying retrieval algorithms, however with considerable missing values. To resolve the data gaps, here we have constructed two global satellite soil moisture products, i.e., the CCI (Climate Change Initiative soil moisture, 1989–2021; CCIori hereafter) and the CM (Correlation Merging soil moisture, 2006–2019; CMori hereafter) products separately using a Convolutional Neural Network (CNN) with autoencoding approach, which considers soil moisture variability in both time and space. The reconstructed datasets, namely CCIrec and CMrec, are cross-evaluated with artificial missing values, and further againt in-situ observations from 12 networks including 485 stations globally, with multiple error metrics of correlation coefficients (R), bias, root mean square errors (RMSE) and unbiased root mean square error (ubRMSE) respectively. The cross-validation results show that the reconstructed missing values have high R (0.987 and 0.974, respectively) and low RMSE (0.015 and 0.032 m3/m3, respectively) with the original ones. The in-situ validation shows that the global mean R between CCIrec (CCIori) and in-situ observations is 0.590 (0.581), RMSE is 0.093 (0.093) m3/m3, ubRMSE is 0.059 (0.058) m3/m3, bias is 0.032 (0.037) m3/m3 respectively; CMrec (CMori) shows quite similar results. The added value of this study is to provide long-term gap-free satellite soil moisture products globally, which helps studies in the fields of hydrology, meteorology, ecology and climate sciences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Frontiers in Earth Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.