Abstract

Time-domain fluorescence diffuse optical tomography (FDOT) can provide information, not only concerning the localization of specific fluorophores, but also about the local fluorophore environment. We present a method based on linear inversion algorithm to reconstruct images of fluorescence yield and lifetime from time-resolved data. To provide efficient solutions, we convert the data type by Laplace transform and adapt normalized Born ratio for its advantages in fluorescence mode. The methodology is experimentally validated in reflection and transmittance measurements by use of time-correlation single photon counting system. We experimentally validate that the proposed scheme can achieve simultaneous three-dimensional reconstruction of the fluorescent yield and lifetime. The results show that for the positions, sizes and shapes of the targets, there are some deviation in reflection measurement, the quality in transmittance one is more satisfied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call