Abstract
Sources of uncertainty involved in exposure reconstruction for short half-life chemicals were characterized using computational models that link external exposures to biomarkers. Using carbaryl as an example, an exposure model, the Cumulative and Aggregate Risk Evaluation System (CARES), was used to generate time-concentration profiles for 500 virtual individuals exposed to carbaryl. These exposure profiles were used as inputs into a physiologically based pharmacokinetic (PBPK) model to predict urinary biomarker concentrations. These matching dietary intake levels and biomarker concentrations were used to (1) compare three reverse dosimetry approaches based on their ability to predict the central tendency of the intake dose distribution; and (2) identify parameters necessary for a more accurate exposure reconstruction. This study illustrates the trade-offs between using non-iterative reverse dosimetry methods that are fast, less precise and iterative methods that are slow, more precise. This study also intimates the necessity of including urine flow rate and elapsed time between last dose and urine sampling as part of the biomarker sampling collection for better interpretation of urinary biomarker data of short biological half-life chemicals. Resolution of these critical data gaps can allow exposure reconstruction methods to better predict population-level intake doses from large biomonitoring studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.