Abstract

Since the 1970s, multiple reconstruction techniques have been proposed and are currently used, to extrapolate and quantify eruptive parameters from sampled tephra fall deposit datasets. Atmospheric transport and deposition processes strongly control the spatial distribution of tephra deposit; therefore, a large uncertainty affects mass derived estimations especially for fall layer that are not well exposed. This paper has two main aims: the first is to analyse the sensitivity to the deposit sampling strategy of reconstruction techniques. The second is to assess whether there are differences between the modelled values for emitted mass and grainsize, versus values estimated from the deposits. We find significant differences and propose a new correction strategy. A numerical approach is demonstrated by simulating with a dispersal code a mild explosive event occurring at Mt. Etna on 24 November 2006. Eruptive parameters are reconstructed by an inversion information collected after the eruption. A full synthetic deposit is created by integrating the deposited mass computed by the model over the computational domain (i.e., an area of 7.5 × 104 km 2). A statistical analysis based on 2000 sampling tests of 50 sampling points shows a large variability, up to 50 % for all the reconstruction techniques. Moreover, for some test examples Power Law errors are larger than estimated uncertainty. A similar analysis, on simulated grain-size classes, shows how spatial sampling limitations strongly reduce the utility of available information on the total grain size distribution. For example, information on particles coarser than ϕ(−4) is completely lost when sampling at 1.5 km from the vent for all columns with heights less than 2000 m above the vent. To correct for this effect an optimal sampling strategy and a new reconstruction method are presented. A sensitivity study shows that our method can be extended to a wide range of eruptive scenarios including those in which aggregation processes are important. The new correction method allows an estimate of the deficiency for each simulated class in calculated mass deposited, providing reliable estimation of uncertainties in the reconstructed total (whole deposit) grainsize distribution.

Highlights

  • A primary objective in volcanology, critical for hazard assessment of active volcanoes, is the characterization of explosive volcanic eruptions and the quantification of their intensities

  • The total emitted mass is equal to 7.7 × 108 kg and the 99.83 % of it is deposited over the domain

  • A numerical strategy has been adopted in order to better understand a deposit footprint and its thoroughness in quantifying eruptive source parameters like mass and TGSD

Read more

Summary

Introduction

A primary objective in volcanology, critical for hazard assessment of active volcanoes, is the characterization of explosive volcanic eruptions and the quantification of their intensities. Knowledge of the total (whole deposit) grain size distribution (TGSD) of the solid particles at the vent is needed if we are to better understand the mechanisms occurring within the conduit during an eruption. This is commonly viewed as comprising a primary fragmentation of magma during rapid decompression producing large fragments (Alidibirov and Dingwell 1996) and a secondary one producing fine ash (Kaminski and Jaupart 1998). For all the aforementioned reasons, uncertainty associated with the tephra dispersal process is quite large and an accurate estimation of total erupted mass and TGSD is a complex and still daunting task

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.