Abstract

BackgroundAccurately identifying gene regulatory network is an important task in understanding in vivo biological activities. The inference of such networks is often accomplished through the use of gene expression data. Many methods have been developed to evaluate gene expression dependencies between transcription factor and its target genes, and some methods also eliminate transitive interactions. The regulatory (or edge) direction is undetermined if the target gene is also a transcription factor. Some methods predict the regulatory directions in the gene regulatory networks by locating the eQTL single nucleotide polymorphism, or by observing the gene expression changes when knocking out/down the candidate transcript factors; regrettably, these additional data are usually unavailable, especially for the samples deriving from human tissues.ResultsIn this study, we propose the Context Based Dependency Network (CBDN), a method that is able to infer gene regulatory networks with the regulatory directions from gene expression data only. To determine the regulatory direction, CBDN computes the influence of source to target by evaluating the magnitude changes of expression dependencies between the target gene and the others with conditioning on the source gene. CBDN extends the data processing inequality by involving the dependency direction to distinguish between direct and transitive relationship between genes. We also define two types of important regulators which can influence a majority of the genes in the network directly or indirectly. CBDN can detect both of these two types of important regulators by averaging the influence functions of candidate regulator to the other genes. In our experiments with simulated and real data, even with the regulatory direction taken into account, CBDN outperforms the state-of-the-art approaches for inferring gene regulatory network. CBDN identifies the important regulators in the predicted network: 1. TYROBP influences a batch of genes that are related to Alzheimer’s disease; 2. ZNF329 and RB1 significantly regulate those ‘mesenchymal’ gene expression signature genes for brain tumors.ConclusionBy merely leveraging gene expression data, CBDN can efficiently infer the existence of gene-gene interactions as well as their regulatory directions. The constructed networks are helpful in the identification of important regulators for complex diseases.

Highlights

  • Identifying gene regulatory network is an important task in understanding in vivo biological activities

  • Context Based Dependency Network (CBDN) successfully infers TYROBP as the important regulator by quantitatively considering TYROBP’s influences on the other genes. For another real expression data from the patients affected by human brain tumors, CBDN predicts two potential important regulators ZNF329 and RB1 whose function are associated with brain tumors. All of these results demonstrate the strength of CBDN in the inference of directed gene regulatory network (GRN) from gene expression data as well as its potential in predicting important regulators

  • Considering the edge direction and the nature of influence function, we propose a directed data processing inequality to show that the influence of a gene which interacts transitively with its target genes cannot be greater than that of a gene which interacts directly, that is

Read more

Summary

Introduction

Identifying gene regulatory network is an important task in understanding in vivo biological activities. The correlations captured within the expression data include the effects of intermediary factors; unless taken into account, they will result in the inclusion of transitive edges in the GRN inferred. To overcome this phenomenon, ARACNE [1], an MI-based method, distinguishes between direct and indirect dependencies by applying data processing inequality. ARACNE [1], an MI-based method, distinguishes between direct and indirect dependencies by applying data processing inequality It considers the lowest MI value among any triplet of genes as a transitive edge. GENIE3 [4] performs variables selection based on an ensemble of regression trees (Random Forests or Extra-Trees)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.