Abstract

The growing attention on cryptocurrencies has led to increasing research on digital stock markets. Approaches and tools usually applied to characterize standard stocks have been applied to the digital ones. Among these tools is the identification of processes of market fluctuations. Being interesting stochastic processes, the usual statistical methods are appropriate tools for their reconstruction. There, besides chance, the description of a behavioural component shall be present whenever a deterministic pattern is ever found. Markov approaches are at the leading edge of this endeavour. In this paper, Markov chains of orders one to eight are considered as a way to forecast the dynamics of three major cryptocurrencies. It is accomplished using an empirical basis of intra-day returns. Besides forecasting, we investigate the existence of eventual long-memory components in each of those stochastic processes. Results show that predictions obtained from using the empirical probabilities are better than random choices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.