Abstract
The aim of this work is to reconstruct clean speech solely from a stream of noise-contaminated MFCC vectors, as may be encountered in distributed speech recognition systems. Speech reconstruction is performed using the ETSI Aurora back-end speech reconstruction standard which requires MFCC vectors, fundamental frequency and voicing information. In this work, fundamental frequency and voicing are obtained using maximum a posteriori prediction from input MFCC vectors, thereby allowing speech reconstruction solely from a stream of MFCC vectors. Two different methods to improve prediction accuracy in noisy conditions are then developed. Experimental results first establish that improved fundamental frequency and voicing prediction is obtained when noise compensation is applied. A series of human listening tests are then used to analyse the reconstructed speech quality, which determine the effectiveness of noise compensation in terms of mean opinion scores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.