Abstract

Cryo-electron tomography enables three-dimensional insights into the macromolecular architecture of cells in a close-to-life state. However, it is limited to thin specimens, <1.0 μm in thickness, typically restricted to the peripheral areas of intact eukaryotic cells. Analysis of tissue ultrastructure, on the other hand, requires physical sectioning approaches, preferably cryo-sectioning, following which electron tomography (ET) may be performed. Nevertheless, cryo-electron microscopy of vitrified sections is a demanding technique and typically cannot be used to examine thick sections, >80-100 nm, due to surface crevasses. Here, we explore the potential use of cryo-ET of vitrified frozen sections (VFSs) for imaging cell adhesions in chicken smooth muscle and mouse epithelial tissues. By investigating 300-400 nm thick sections, which are collected on the EM grid and re-vitrified, we resolved fine 3D structural details of the membrane-associated dense plaques and flanking caveoli in smooth muscle tissue, and desmosomal adhesions in stratified epithelium. Technically, this method offers a simple approach for reconstructing thick volumes of hydrated frozen sections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.