Abstract

Cyanobacteria play a key role in marine photosynthesis, which contributes to the global carbon cycle and to the world oxygen supply. Genes encoding the photosystem-II (PSII) reaction centre are found in many cyanophage genomes, and it was suggested that the horizontal transfer of these genes might be involved in increasing phage fitness. Recently, evidence for the existence of phages carrying Photosystem-I (PSI) genes was also reported. Here, using a combination of different marine metagenomic datasets and a unique crossing of the datasets, we now describe the finding of phages that, as in plants and cyanobacteria, contain both PSII and PSI genes. In addition, these phages also contain NADH dehydrogenase genes. The presence of modified PSII and PSI genes in the same viral entities in combination with electron transfer proteins like NAD(P)H dehydrogenase (NDH-1) strongly points to a role in perturbation of the cyanobacterial host photosynthetic electron flow. We therefore suggest that, depending on the physiological condition of the infected cyanobacterial host, the viruses may use different options to maximize survival. The modified PSI may alternate between functioning with PSII in linear electron transfer and contributing to the production of both NADPH and ATP or functioning independently of PSII in cyclic mode via the NDH-1 complex and thus producing only ATP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.