Abstract

Using the Navarro-Frenk-White (NFW) dark matter density profile we reconstruct an effective field theory model for gravity at large distances from a central object by demanding that the vacuum solution has the same gravitational properties as the NFW density profile has in the context of General Relativity (GR). The dimensionally reduced reconstructed action for gravity leads to a vacuum metric that includes a modified Rindler acceleration term in addition to the Schwarzschild and cosmological constant terms. The new term is free from infrared curvature singularities and leads to a much better fit of observed galaxy velocity rotation curves than the corresponding simple Rindler term of the Grumiller metric, at the expense of one additional parameter. When the new parameter is set to zero the new metric term reduces to a Rindler constant acceleration term. We use galactic velocity rotation data to find the best fit values of the parameters of the reconstructed geometric potential and discuss possible cosmological implications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.