Abstract

In dynamic minimally invasive surgery environments, 3D reconstruction of deformable soft-tissue surfaces with stereo endoscopic images is very challenging. A simple self-supervised stereo reconstruction framework is proposed to address this issue, which bridges the traditional geometric deformable models and the newly revived neural networks. The equivalence between the classical thin plate spline (TPS) model and a single-layer fully-connected or convolutional network is studied. By alternating training of two TPS equivalent networks within the self-supervised framework, disparity priors are learnt from the past stereo frames of target tissues to form an optimized disparity basis, on which disparity maps of subsequent frames can be estimated more accurately without sacrificing computational efficiency and robustness. The proposed method was verified on stereo-endoscopic videos recorded by the da Vinci® surgical robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.