Abstract

The immunoaffinity-purified subunits of the yeast DNA primase-DNA polymerase protein complex and subunit-specific monoclonal antibodies were used to explore the structural relationships of the subunits in the complex. The reconstituted four-subunit complex (180-, 86-, 58-, and 49-kDa polypeptides) behaved as a single species, exhibiting a Stokes radius of 80 A and a sedimentation coefficient of 8.9 S. The calculated molecular weight of the reconstituted complex is 312,000. We infer that the stoichiometry of the complex is one of each subunit per complex. The complex has a prolate ellipsoid shape with an axial ratio of approximately 16. When the 180-kDa and DNA primase subunits were recombined in the absence of the 86-kDa subunit, a physical complex formed, as judged by immunoprecipitation of DNA primase activity and polypeptides with an anti-180-kDa monoclonal antibody. While the 86-kDa subunit readily forms a physical complex with the 180-kDa DNA polymerase catalytic subunit, we have not detected a complex containing 86-kDa and the DNA primase subcomplex (49- and 58-kDa subunits). The 86-kDa subunit was not required for DNA primase-DNA polymerase complex formation; the 180-kDa subunit and DNA primase heterodimer directly interact. However, the presence of the 86-kDa subunit increased the rate at which the DNA primase and 180-kDa polypeptides formed a complex and increased the total fraction of DNA primase activity that was associated with DNA polymerase activity. The observations demonstrate that the DNA primase p49.p58 heterodimer and the DNA polymerase p86.p180 heterodimer interact via the 180-kDa subunit. The four-subunit reconstituted complex was sufficient to catalyze the DNA chain extension coupled to RNA primer synthesis on a single-stranded DNA template, as previously observed in the conventionally purified complex isolated from wild type cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.