Abstract

Binding protein-dependent transport systems mediate the accumulation of diverse substrate in bacteria. The binding protein-dependent galactose transport of Salmonella typhimurium has been reconstituted in proteoliposomes. The proteoliposomes were made with proteins solubilized and renatured from inclusion bodies produced by a bacterial strain containing a plasmid with the mgl (methylgalactose permease) operon of Salmonella typhimurium. Galactose transport is dependent both on the addition of the purified galactose binding protein to the transport assay, and on ATP. The interaction between the liganded galactose binding protein and proteoliposomes displays Michaelis type kinetics with a Km of around 15 μM. Galactose transport is coupled to ATP hydrolysis with a stoichiometry (ATP/galactose) of 2.5:1. Galactose transport in proteoliposomes is not significantly inhibited by the uncoupler carbonylcyanide m-chlorophenylhydrazone, but is inhibited by 0.5 mM vanadate. The present reconstitution of galactose transport in proteoliposomes suggests that the MglA, MglC and MglE proteins have been solubilized and renatured in an active form from the inclusion bodies of the mgl hyperproducing strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.