Abstract

Binding protein-dependent transport systems mediate the accumulation of diverse substrate in bacteria. The binding protein-dependent galactose transport of Salmonella typhimurium has been reconstituted in proteoliposomes. The proteoliposomes were made with proteins solubilized and renatured from inclusion bodies produced by a bacterial strain containing a plasmid with the mgl (methylgalactose permease) operon of Salmonella typhimurium. Galactose transport is dependent both on the addition of the purified galactose binding protein to the transport assay, and on ATP. The interaction between the liganded galactose binding protein and proteoliposomes displays Michaelis type kinetics with a Km of around 15 μM. Galactose transport is coupled to ATP hydrolysis with a stoichiometry (ATP/galactose) of 2.5:1. Galactose transport in proteoliposomes is not significantly inhibited by the uncoupler carbonylcyanide m-chlorophenylhydrazone, but is inhibited by 0.5 mM vanadate. The present reconstitution of galactose transport in proteoliposomes suggests that the MglA, MglC and MglE proteins have been solubilized and renatured in an active form from the inclusion bodies of the mgl hyperproducing strain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call