Abstract

Synaptic transmission of a nerve impulse is an extremely rapid event relying on transfer of brief chemical impulses from one cell to another. This transmission is dependent upon Ca2+ and known to be quantal, which led to the widely accepted vesicular hypothesis of neurotransmitter release. However, at least in the case of rapid synaptic transmission the hypothesis has been found difficult to reconcile with a number of observations. In this article, we shall review data from experiments dealing with reconstitution of quantal and Ca2+-dependent acetylcholine release in: i) proteoliposomes, ii) Xenopus oocytes, and iii) release-deficient cell lines. In these three experimental models, release is dependent on the expression of the mediatophore, a protein isolated from the plasma membrane of cholinergic nerve terminals of the Torpedo electric organ. We shall discuss the role of mediatophore in quantal acetylcholine release, its possible involvement in morphological changes affecting presynaptic membrane during the release, and its interactions with others proteins of the cholinergic nerve terminal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call