Abstract

BackgroundTo evaluate the volumetric and geometric differences in the ITVs generated by four-dimensional (4D) computed tomography (CT), a modified slow CT scan, and a combination of these CT methods in lung cancer patients treated with stereotactic body radiotherapy (SBRT).MethodsBoth 4D CT and modified slow CT using a multi-slice CT scanner were performed for SBRT planning in 14 patients with 15 pulmonary targets. Volumetric and geometric analyses were performed for (1) ITVall, generated by combining the gross tumor volumes (GTVs) from all 8 phases of the 4D CT; (2) ITV2, generated by combining the GTVs from 2 extreme phases of the 4D CT; (3) ITVslow, derived from the GTV on the modified slow CT scan; (4) ITVall+slow, generated by combining ITVall and ITVslow; and (5) ITV2+slow, generated by combining ITV2 and ITVslow. Three SBRT plans were performed using 3 ITVs to assess the dosimetric effects on normal lung caused by the various target volumes.ResultsITVall (11.8 ± 8.3 cm3) was significantly smaller than ITVall+slow (12.5 ± 8.9 cm3), with mean values of 5.8% for the percentage volume difference, and a mean of 7.5% of ITVslow was not encompassed in ITVall. The geometric coverages of ITV2 and ITVslow for ITVall were 84.7 ± 6.6% and 76.2 ± 9.3%, respectively, but the coverage for ITVall increased to 90.9 ± 5.9% by using the composite of these two ITVs. There were statistically significant increases in the lung-dose parameters of the plans based on ITVall+slow compared to the plans based on ITVall or ITV2+slow. However, the magnitudes of these differences were relatively small, with a value of less than 3% in all dosimetric parameters.ConclusionsDue to its ability to provides additional motion information, the combination of 4D CT and a modified slow CT scan in SBRT planning for lung cancer can be used to reduce possible errors in true target delineation caused by breathing pattern variations.

Highlights

  • To evaluate the volumetric and geometric differences in the internal target volume (ITV) generated by four-dimensional (4D) computed tomography (CT), a modified slow CT scan, and a combination of these CT methods in lung cancer patients treated with stereotactic body radiotherapy (SBRT)

  • As an attempt to develop a more accurate ITV delineation method in SBRT planning for lung cancer, we focused on the combined use of 4D CT and a modified slow CT scan

  • Considering the possible error in true target delineation caused by breathing pattern variations and the small dosimetric difference in normal lung tissue caused by the increased target volume, the target volume definition obtained by combining 4D CT and a modified slow CT scan may be preferable to that obtained using a single 4D CT scan

Read more

Summary

Introduction

To evaluate the volumetric and geometric differences in the ITVs generated by four-dimensional (4D) computed tomography (CT), a modified slow CT scan, and a combination of these CT methods in lung cancer patients treated with stereotactic body radiotherapy (SBRT). Despite promising results in medically inoperable patients, the role of SBRT in treating operable NSCLC remains to be defined by ongoing randomized trials. This approach involves the delivery of an ablative dose to the target using highly conformal and hypofractionated radiation over a short time course. In radiotherapy for lung cancer, large uncertainties exist in target delineation and localization because of respiration-induced tumor motion. These uncertainties are influential in the SBRT technique, which uses high doses in small fractions for a small target volume

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call