Abstract

Treatment of spheroplasts of Nostoc museorum with hypotonic buffer results in membranes depleted of cytochrome c-553, but still active in photosynthetic and respiratory electron transport. These membranes retain full photosystem II activity (H2O→DADox). Complete linear electron transport (H2O→NADP(+)), however, is decreased as compared with untreated spheroplasts. Addition of basic Nostoc cytochrome c-553 to depleted membranes reconstitutes NADP(+) reduction and redox reactions of the photosystem I region as well.Using NADPH as electron donor, respiration of depleted membranes is also stimulated by adding cytochrome c-553, indicative of its function in respiratory electron transport.Cytochrome c-553 from Bumilleriopsis filiformis, Spirulina platensis (acidic types), Phormidium foveolarum (basic type), and mitochondrial horse-heart cytochrome c-550 are not effective in reconstituting both photosynthetic and respiratory electron transport, which points to a specific role of Nostoc cytochrome c-553.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.