Abstract
This paper studies the endocytosis of ricin at the apical pole of polarized MDCK II cells after permeabilization of the cells basolaterally with streptolysin O. Ricin endocytosis after the addition of cytosol with an ATP-regenerating system was 2-3-fold higher than after the addition of a transport medium. A similar increase in ricin endocytosis was obtained by reconstitution of dialyzed cytosol with the nonhydrolyzable GTP analog, GTP gamma S, in the presence of an ATP-regenerating system. The nonhydrolyzable GDP analog, GDP beta S, did not increase ricin uptake. In contrast to the data obtained with ricin, GTP gamma S was found to inhibit apical transferrin uptake in MDCK II cells transfected with the human transferrin receptor, and the data thus imply that GTP gamma S supports clathrin-independent endocytosis. Electron microscopy (EM) demonstrated that free endocytic vesicles were formed from the apical pole of permeabilized MDCK II cells in the presence of GTP gamma S and that both a ricin-HRP conjugate, HRP, and cationized gold were endocytosed. Ricin endocytosis in the presence of intact cytosol, as well as GTP gamma S-stimulated ricin uptake, was inhibited by Clostridium botulinum C3 transferase, an enzyme found to inactivate Rho proteins. The data demonstrate that apical clathrin-independent endocytosis functions in the presence of GTP gamma S, and suggest that one or more of the small GTP binding proteins of the Rho family is involved in regulation of the apical clathrin-independent endocytosis in MDCK II cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.