Abstract

We present evidence for the existence of prolactin upstream factor 1 (PUF-1) in rat pituitary-derived cells and demonstrate its interaction with a symmetrical DNA element located in the 5' flanking region of the gene. An in vitro expression system developed from pituitary-derived GH3 cells was used to determine that 420 base pairs (bp) of 5' flanking DNA was sufficient for cell-specific, accurate, and efficient RNA polymerase II transcription of the rat prolactin gene. Reconstitution of in vitro transcription with pituitary and nonpituitary nuclear extracts suggested that the presence of GH3 cell-specific factors mediated the activation of prolactin gene expression. We also demonstrated that a functionally stable transcription complex assembled on the prolactin promoter. Using DNase I protection procedures, we have identified the DNA-protein binding area in the prolactin 5' flanking region. GH3 nuclear extracts contain a cell-specific protein (PUF-I) that binds to a 28-bp region (-63 to -36)which contains an 18-bp imperfect palindrome (-63 to -46). The role that the interaction between PUF-I and the imperfect palindrome plays in in vitro pituitary-specific prolactin gene expression is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.