Abstract
Cyanobacterial blooms pose a serious threat to public health due to the presence of cyanotoxins. Microcystin-LR (MC-LR) produced by Microcystis aeruginosa is the most common cyanotoxins. Due to the limitation of isolation, purification, and genetic manipulation techniques, it is difficult to study and verify insitu the biosynthetic pathways and molecular mechanisms of MC-LR. We reassembled the biosynthetic gene cluster (mcy cluster) of MC-LR invitro by synthetic biology, designed and constructed the strong bidirectional promoter biPpsbA2 , transformed it into Synechococcus 7942, and successfully expressed MC-LR at a level of 0.006-0.018 fg cell-1 d-1 . We found the expression of MC-LR led to abnormal cell division and cellular filamentation, further using various methods proved that by irreversibly competing its GTP-binding site, MC-LR inhibits assembly of the cell division protein FtsZ. The study represents the first reconstitution and expression of the mcy cluster and the autotrophic production of MC-LR in model cyanobacterium, which lays the foundation for resolving the microcystins biosynthesis pathway. The discovered role of MC-LR in cell division reveals a mechanism of how blooming cyanobacteria gain a competitive edge over their nonblooming counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.